Ecology & Evolution, 12(5), 188-193.
(Eds.), Construcción de problemas de investigación: diálo-
gos entre el interior y el exterior (páginas 230-268). Mede-
llín: Universidad de Antioquia.
Brenner, S. (2012). Life’s code script. Nature, 482(7386), 461.
Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Therau-
laz, G. & Bonabeau, E. (2001). Self-Organization in Biologi-
cal Systems. Princeton: Princeton University Press.
Gómez-Cruz, N. A. (2013). Vida Artificial: Ciencia e Ingeniería de
Sistemas Complejos. Bogotá: Universidad del Rosario.
Gómez-Cruz, N. A. & Niño, L. F. (2020). Computación biológica:
el estudio de la naturaleza computacional de los sistemas
vivos. En C. E. Maldonado (Ed.). Biología Teórica, Explica-
ciones y Complejidad (capítulo 7). Bogotá, Universidad del
Bosque.
Cleland, C. E. (2006). The Church–Turing thesis. A last vestige of
a failed mathematical program. In A. Olszewski, J. Woleński
&
R. Janusz (Eds.), Church’s Thesis After 70 Years (pp. 119-
1
46). Frankfurt: Ontos.
Collete, T. (2019). Path integration: how details of the honeybee
waggle dance and the foraging strategies of desert ants mi-
ght help in understanding its mechanisms. Journal of Expe-
rimental Biology, 222(11), jeb205187.
Gordon, D. (2016a). Collective wisdom of ants. Scientific Ameri-
can, 314(2), 44-47.
Gordon, D. (2016b). The evolution of the algorithms for collective
behavior. Cell Systems, 3(6), 514-520.
Da Costa, N. & Doria, F. A. (2013). Metamathematical limits to
computation. In K. Nakamatsu & L. C. Jain (Eds.), The Han-
dbook on Reasoning-Based Intelligent Systems (pp. 119-
Gordon, D. (2010). Ant Encounters: Interaction Networks and Co-
lony Behavior. Princeton: Princeton University Press.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Rai-
lsback, S. F. et al. (2005). Pattern-oriented modeling of
agent-based complex systems: Lessons from ecology.
Science, 310(5750), 987-991.
1
41). New Jersey: World Scientific.
Dodig-Crnkovic, G. (2011). Dynamics of information as natural
computation. Information, 2(3), 460-477.
Dodig-Crnkovic, G. (2011a). Significance of models of computa-
tion, from Turing model to natural computation. Minds and
Machines, 21(2), 301-322.
Hartmann, G. & Wehner, R. (1995). The ant’s path integration
system: a neural architecture. Biological Cybernetics,
73(6), 483-497.
Dodig-Crnkovic, G. (2010). Biological information and natural
computation. In J. Vallverdú (Ed.), Thinking Machines and
the Philosophy of Computer Science: Concepts and Princi-
ples (pp. 36-52). Hershey, PA: IGI Global.
Heinze, S., Narendra, A. & Cheung, A. (2018). Principles of insect
path integration. Current Biology, 28(17), R1043-R1058.
Hewitt, C. (2013). What is computation? Actor model vs. Turing’s
model. In H. Zenil (Ed.), A Computable Universe. Unders-
tanding Computation and Exploring Nature as Computation
(pp. 159-186). Singapore: World Scientific.
Dornhaus, A. & Franks, N. R. (2008). Individual and collective
cognition in ants and other insects (Hymenoptera: Formici-
dae). Myrmecological News, 11, 215-226.
Dorigo, M. & Stützle, T. (2004). Ant Colony Optimization. Cambri-
dge, MA: MIT Press.
Hölldobler, B. & Wilson, E. O. (2014). El Superorganismo. Belle-
za y Elegancia de las Asombrosas Sociedades de Insectos.
Buenos Aires: Katz Editores.
Eberbach, E., Goldin, D. & Wegner, P. (2004). Turing’s ideas and
models of computation. In: C. Teuscher (Ed.), Alan Turing:
Life and Legacy of a Great Thinker (pp. 159-194). Berlin:
Springer.
Hölldobler, B. & Wilson, E. O. (1990). The Ants. Berlin: Springer.
Horváth, G. & Varjú, D. (2004). Polarized Light in Animal Vision:
Polarization Patterns in Nature. Berlin: Springer.
Kari, L. & Rozenberg, G. (2008). The many facets of natural com-
puting. Communications of the ACM, 51(10), 72-83.
MacLennan, B. J. (2004). Natural computation and non-Turing
models of computation. Theoretical Computer Science,
317(1-3), 115-145.
Feinerman, O. & Korman, A. (2017). Individual versus collective
cognition in social insects. Journal of Experimental Biology,
2
20(1), 73-82.
Forbes, N. (2004). Imitation of Life: How Biology Is Inspiring
Computing. Cambridge, MA: MIT Press.
Franks, N. R. (1989). Army ants: A collective intelligence. Ameri-
can Scientist, 77(2), 138-145.
Maldonado, C. E. & Gómez-Cruz, N. A. (2015). Biological hyper-
computation: A new research problem in complexity theory.
Complexity, 20(4), 8-18.
Goldin, D., Smolka, S. A., Attie, P. & Sonderegger, E. (2004). Tu-
ring machines, transition systems, and interaction. Infor-
mation & Computation Journal, 194(2), 101-128.
Mitchell, M. (2009). Complexity: A Guided Tour. Oxford: Oxford
University Press.
Goldin, D. & Wegner, P. (2008). The interactive nature of com-
puting: Refuting the strong Church-Turing thesis. Minds &
Machines, 18(1), 17-38.
Mitchell. M. (2012). Biological computation. The Computer Jour-
nal, 55(7), 852-855.
Moussaid, M., Garnier, S., Theraulaz, G. & Helbing, D. (2009).
Collective information processing and pattern formation in
swarms, flocks y crowds. Topics in Cognitive Science, 1(3),
469-497.
Gómez-Cruz, N. A. (2020). Computación biológica: el estudio de
la naturaleza computacional de los sistemas vivos. En C. E.
Maldonado (Ed.). Biología Teórica, Explicaciones y Comple-
jidad (capítulo 7). Bogotá, Universidad del Bosque.
Gómez-Cruz, N. A. (2018). Simulación basada en agentes: una
metodología para el estudio de sistemas complejos. In M.
L. Eschenhagen, G. Velez, Guerrero, G. & C. E. Maldonado
Müller, M. & Wehner, R. (1988). Path integration in desert ants,
Cataglyphis fortis. Proceedings of the National Academy of
Sciences, 85(14), 5287-5290.
National Geographic (2011). Hermandad de tejedoras. Retrieved
Revista de la Unidad de Investigación de la Facultad de Economía de la UNSA
21